Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
2.
Biochim Biophys Acta Biomembr ; 1864(2): 183837, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890582

RESUMO

Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 µM. The C-terminal AQP4 peptide interacted with both the C- and N-lobes of CaM (2:1 binding ratio; Kd1: 3.6 µM, Kd2: 113.6 µM, respectively). A recombinant AQP4 protein domain (recAQP4CT, containing the entire cytosolic C-terminal sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 µM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data support a unique adapter protein binding mode for CaM with AQP4.


Assuntos
Aquaporina 4/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Aquaporina 4/química , Sítios de Ligação , Calmodulina/química , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos
3.
Brain ; 145(1): 64-75, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34499128

RESUMO

Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.


Assuntos
Aquaporina 4 , Astrócitos , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Homeostase , Humanos , Água/metabolismo
4.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529831

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Bases de Conhecimento , Ligantes , Receptores Acoplados a Proteínas G
5.
STAR Protoc ; 1(3): 100157, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377051

RESUMO

Aquaporins (AQPs) are membrane channel proteins that facilitate the movement of water down osmotic gradients across biological membranes. This protocol allows measurements of AQP-mediated water transport across the plasma membrane of live mammalian cells. Calcein is a fluorescent dye that is quenched in a concentration-dependent manner. Therefore, on short timescales, its concentration-dependent fluorescence can be used as a probe of cell volume, and therefore a probe of water transport into or out of cells. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Kitchen and Conner (2015). For the underlying methodology development, please refer to Fenton et al. (2010) and Solenov et al. (2004).


Assuntos
Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Fluoresceínas/metabolismo , Água/metabolismo , Animais , Adesão Celular , Permeabilidade da Membrana Celular , Cães , Fluorescência , Células HEK293 , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Mamíferos
6.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
7.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934923

RESUMO

Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.


Assuntos
Aquaporinas/antagonistas & inibidores , Mamíferos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Aquaporinas/química , Aquaporinas/metabolismo , Bioensaio , Ensaios Clínicos como Assunto , Humanos , Patentes como Assunto
8.
Sci Rep ; 9(1): 20369, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889130

RESUMO

Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.

9.
Cells ; 7(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340399

RESUMO

After injury to the spinal cord, edema contributes to the underlying detrimental pathophysiological outcomes that lead to worsening of function. Several related membrane proteins called aquaporins (AQPs) regulate water movement in fluid transporting tissues including the spinal cord. Within the cord, AQP1, 4 and 9 contribute to spinal cord injury (SCI)-induced edema. AQP1, 4 and 9 are expressed in a variety of cells including astrocytes, neurons, ependymal cells, and endothelial cells. This review discusses some of the recent findings of the involvement of AQP in SCI and highlights the need for further study of these proteins to develop effective therapies to counteract the negative effects of SCI-induced edema.

10.
Oncol Lett ; 16(1): 713-720, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29963136

RESUMO

Aquaporins are membrane proteins that regulate cellular water flow. Recently, aquaporins have been proposed as mediators of cancer cell biology. A subset of aquaporins, referred to as aquaglyceroporins are known to facilitate the transport of glycerol. The present study describes the effect of gene knockdown of the aquaglyceroporin AQP3 on MDA-MB-231 breast cancer cell proliferation, migration, invasion, adherence and response to the chemotherapeutic agent 5-fluorouracil. shRNA mediated AQP3 gene knockdown induced a 28% reduction in cellular proliferation (P<0.01), a 39% decrease in migration (P<0.0001), a 24% reduction in invasion (P<0.05) and a 25% increase in cell death at 100 µM 5-FU (P<0.01). Analysis of cell permeability to water and glycerol revealed that MDA-MB-231 cells with knocked down AQP3 demonstrated a modest decrease in water permeability (17%; P<0.05) but a more marked decrease in glycerol permeability (77%; P<0.001). These results suggest that AQP3 has a role in multiple aspects of breast cancer cell pathophysiology and therefore represents a novel target for therapeutic intervention.

11.
Eur J Neurosci ; 46(9): 2542-2547, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28925524

RESUMO

Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32 °C) or normothermic (37 °C) conditions. AQP4 transcript, total protein and surface-localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates or cell surface biotinylation, followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine, TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Hipotermia/metabolismo , Canais de Cátion TRPV/metabolismo , Aquaporina 4/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Humanos , Hipotermia/patologia , Hipotermia Induzida , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/agonistas
12.
Biochem Pharmacol ; 142: 96-110, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705698

RESUMO

Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , AMP Cíclico/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Ensaio Radioligante , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Proteínas Recombinantes de Fusão , Transfecção
13.
Biochemistry ; 56(30): 3877-3880, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28691801

RESUMO

The second extracellular loop (ECL2) of the G protein-coupled receptor (GPCR) family is important for ligand interaction and drug discovery. ECL2 of the family B cardioprotective calcitonin gene-related peptide (CGRP) receptor is required for cell signaling. Family B GPCR ligands have two regions; the N-terminus mediates receptor activation, and the remainder confers high-affinity binding. Comparing antagonism of CGRP8-37 at a number of point mutations of ECL2 of the CGRP receptor, we show that the ECL2 potentially facilitates interaction with up to the 18 N-terminal residues of CGRP. This has implications for understanding family B GPCR activation and for drug design at the CGRP receptor.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Proteína Semelhante a Receptor de Calcitonina/agonistas , Mióticos/farmacologia , Modelos Moleculares , Fragmentos de Peptídeos/farmacologia , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/agonistas , Transdução de Sinais/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Cinética , Ligantes , Mióticos/química , Mióticos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Homologia Estrutural de Proteína
14.
Eur J Neurosci ; 46(5): 2121-2132, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715131

RESUMO

Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the expression of AQPs in the epileptic brain is not fully characterised. This study uses microarray and ELISA methods to analyse the mRNA and protein expression of the human cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of TLE patients. The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein expression was also increased while expression of AQP1 protein remained unchanged, and AQP9 was undetected. Microarray data analysis identified 3333 differentially regulated genes and suggested the involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) that were identified as differentially expressed from microarray analysis. ELISA data showed that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical astrocytes. Elucidating the mechanism of selective regulation of different AQPs and associated regulatory proteins may provide a new therapeutic approach to epilepsy treatment.


Assuntos
Aquaporinas/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Neocórtex/metabolismo , Transcriptoma , Adulto , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Epilepsia do Lobo Temporal/cirurgia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteoma , RNA Mensageiro/metabolismo , Esclerose/metabolismo , Esclerose/cirurgia , Adulto Jovem
15.
Mol Cell Endocrinol ; 454: 39-49, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28572046

RESUMO

The extracellular loop 2 (ECL2) region is the most conserved of the three ECL domains in family B G protein-coupled receptors (GPCRs) and has a fundamental role in ligand binding and activation across the receptor super-family. ECL2 is fundamental for ligand-induced activation of the calcitonin gene related peptide (CGRP) receptor, a family B GPCR implicated in migraine and heart disease. In this study we apply a comprehensive targeted non-alanine substitution analysis method and molecular modelling to the functionally important residues of ECL2 to reveal key molecular interactions. We identified an interaction network between R274/Y278/D280/W283. These amino acids had the biggest reduction in signalling following alanine substitution analysis and comprise a group of basic, acidic and aromatic residues conserved in the wider calcitonin family of class B GPCRs. This study identifies key and varied constraints at each locus, including diverse biochemical requirements for neighbouring tyrosine residues and a W283H substitution that recovered wild-type (WT) signalling, despite the strictly conserved nature of the central ECL2 tryptophan and the catastrophic effects on signalling of W283A substitution. In contrast, while the distal end of ECL2 requires strict conservation of hydrophobicity or polarity in each position, mutation of these residues never has a large effect. This approach has revealed linked networks of amino acids, consistent with structural models of ECL2 and likely to represent a shared structural framework at an important ligand-receptor interface that is present across the family B GPCRs.


Assuntos
Mutagênese , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Animais , Células COS , Proteína Semelhante a Receptor de Calcitonina , Membrana Celular/metabolismo , Chlorocebus aethiops , Estudos de Coortes , Simulação por Computador , Sequência Conservada , AMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Mutação/genética , Estrutura Secundária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Triptofano/química
16.
Mol Cell Endocrinol ; 449: 3-11, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27899324

RESUMO

The extracellular loops (ECLs) of G protein-coupled receptors (GPCRs) can bind directly to docked orthosteric or allosteric ligands, they can contain transient contact points for ligand entry into the transmembrane (TM) bundle and they can regulate the activation of the receptor signalling pathways. Of the three ECLs, ECL2 is the largest and most structurally diverse reflecting its functional importance. This has been shown through biochemical techniques and has been supported by the many subsequent crystal structures of GPCRs bound to both agonists and antagonists. ECL2 shares common structural features between (and sometimes across) receptor sub-families and can facilitate ligand entry to the TM core or act directly as a surface of the ligand-binding pocket. Structural similarities seem to underpin common binding mechanisms; however, where these exist, variations in primary sequence ensure ligand-binding specificity. This review will compare current understanding of the structural themes and main functional roles of ECL2 in ligand binding, activation and regulation of the major families of GPCRs.


Assuntos
Família Multigênica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Transdução de Sinais
17.
Front Cell Neurosci ; 11: 386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311824

RESUMO

Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultured under hypoxic conditions for 6 h were investigated. Cells were treated either with or without a mild hypothermic intervention 2 h post-insult to mimic the treatment of patients following traumatic brain injury (TBI) and/or stroke. Using human gene expression microarrays, 411 differentially expressed genes were identified following hypothermic treatment of astrocytes following a 2 h hypoxic insult. KEGG pathway analysis indicated that these genes were mainly enriched in the Wnt and p53 signaling pathways, which were inhibited following hypothermic intervention. The expression levels of 168 genes involved in Wnt signaling were validated by quantitative real-time-PCR (qPCR). Among these genes, 10 were up-regulated and 32 were down-regulated with the remainder unchanged. Two of the differentially expressed genes (DEGs), p38 and JNK, were selected for validation at the protein level using cell based ELISA. Hypothermic intervention significantly down-regulated total protein levels for the gene products of p38 and JNK. Moreover, hypothermia significantly up-regulated the phosphorylated (activated) forms of JNK protein, while downregulating phosphorylation of p38 protein. Within the p53 signaling pathway, 35 human apoptosis-related proteins closely associated with Wnt signaling were investigated using a Proteome Profiling Array. Hypothermic intervention significantly down-regulated 18 proteins, while upregulating one protein, survivin. Hypothermia is a complex intervention; this study provides the first detailed longitudinal investigation at the transcript and protein expression levels of the molecular effects of therapeutic hypothermic intervention on hypoxic human primary cortical astrocytes. The identified genes and proteins are targets for detailed functional studies, which may help to develop new treatments for brain injury based on an in-depth mechanistic understanding of the astrocytic response to hypoxia and/or hypothermia.

18.
J Biol Chem ; 291(22): 11657-75, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27013657

RESUMO

Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.


Assuntos
Adrenomedulina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Adrenomedulina/genética , Sequência de Aminoácidos , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Proteína 2 Modificadora da Atividade de Receptores/química , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/química , Proteína 3 Modificadora da Atividade de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Alinhamento de Sequência
19.
J Biol Chem ; 291(13): 6858-71, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26786101

RESUMO

The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.


Assuntos
Aquaporina 1/química , Aquaporina 3/química , Aquaporina 4/química , Água/química , Sequência de Aminoácidos , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cães , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Ligação de Hidrogênio , Células Madin Darby de Rim Canino , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Concentração Osmolar , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Água/metabolismo
20.
PLoS One ; 10(11): e0143027, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569106

RESUMO

Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow.


Assuntos
Aquaporina 5/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Aquaporina 5/química , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Soluções Hipotônicas/farmacologia , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Transporte Proteico/efeitos dos fármacos , Serina/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...